Signals And Systems - Electrical Engineering
In electrical engineering, the fundamental quantity of representing some information is called a signal. It does not matter what the information is i-e: Analog or digital information. In mathematics, a signal is a function that conveys some information. In fact any quantity measurable through time over space or any higher dimension can be taken as a signal. A signal could be of any dimension and could be of any form.
Signals and Systems - Electrical Engineering
Advances in technology are improving capabilities of analyzing diverse information sources such as audio (speech, acoustics, music), image (video, multimedia, medical scans), medical signals (heart rate, blood pressure, brain activity) and remote sensing data (geophysical, radar, sonar). Examples of systems that manipulate signals are speech recognition, video streaming, cellular networks and medical scans such as MRI. The disciplines of signal and image processing are concerned with the analysis and synthesis of signals and their interaction with systems.
In communications, the objective is to transfer information (signals) from one or many sources to one or many destinations, which requires the design of transmission schemes (e.g., modulation and coding), receivers, and filters. The Signal Systems and Communications area covers the fundamentals of analog and digital signals and systems, the mathematical tools for the analysis of deterministic and random signals, and applications to digital signal processing, digital image processing, and digital/analog communications. Oregon State faculty in signals and communications specialize in areas such as wired and wireless communications, ecological and medical research, cellular communication, data and information sharing.
Employment opportunities range across a large variety of areas such as the cellphone industry, fiber optic communications, ADSL and broadband cable communications, sound and audio engineering, speech recognition, medical imaging systems (X-Rays, CT, MRI, PET), DSP hardware and software design, printing industry, digital displays (CRT, LCD, plasma), digital cameras and camcorders, image compression standards (JPEG, MPEG).
E E 200 Undergraduate Research Exploration Seminar (1)Weekly seminar featuring research primarily from within the Department of Electrical and Computer Engineering. Speakers include senior PhD students and postdocs as well as faculty from within the department. Provides students with an opportunity to connect with the broader research community in electrical and computer engineering. Credit/no-credit only.View course details in MyPlan: E E 200
E E 215 Fundamentals of Electrical Engineering (4) NScIntroduction to electrical engineering. Basic circuit and systems concepts. Mathematical models of components. Kirchhoff's laws. Resistors, sources, capacitors, inductors, and operational amplifiers. Solution of first and second order linear differential equations associated with basic circuit forms. Prerequisite: either MATH 136, or MATH 126 and either MATH 207, MATH 307, or AMATH 351, any of which may be taken concurrently; and either PHYS 122 or PHYS 142.View course details in MyPlan: E E 215
E E 233 Circuit Theory (5)Electric circuit theory. Analysis of circuits with sinusoidal signals. Phasors, system functions, and complex frequency. Frequency response. Computer analysis of electrical circuits. Power and energy. Two port network theory. Laboratory in basic electrical engineering topics. Prerequisite: E E 215.View course details in MyPlan: E E 233
E E 242 Signals, Systems, and Data I (5)Introduction to signal processing, including both continuous- and discrete-time signals and systems. Basic signals including impulses, unit steps, periodic signals and complex exponentials. Convolution of signals. Fourier series and transforms. Linear, time-invariant filters. Computer laboratory. Prerequisite: either MATH 135, MATH 207, or AMATH 351, any of which may be taken concurrently; and either E E 241, which may be taken concurrently, or CSE 163. View course details in MyPlan: E E 242
E E 299 Introductory Topics in Electrical Engineering (1-5, max. 10) NScNew and experimental approaches to basic electrical engineering. May include design and construction projects.View course details in MyPlan: E E 299
E E 399 Special Topics in Electrical Engineering (1-5, max. 10)New and experimental approaches to current electrical engineering problems. May include design and construction projects.View course details in MyPlan: E E 399
E E 436 Medical Instrumentation (4)Introductory course in the application of instrumentation to medicine. Topics include transducers, signal-conditioning amplifiers, electrodes and electrochemistry, ultrasound systems, electrical safety, and the design of clinical electronics. Laboratory included. For upper-division and first-year graduate students preparing for careers in bioengineering - both research and industrial. Prerequisite: E E 332.View course details in MyPlan: E E 436
E E 443 Machine Learning for Signal Processing Applications (4)Application of machine learning and deep learning algorithms to real-world signal, image, and video processing problems using cloud computing with central, graphics, and tensor processing units (CPU/GPU/TPU). Characteristics of multi-dimensional signals and systems. Unsupervised and supervised learning. Deep learning convolutional neural networks. Generative adversarial learning. Open long-tailed recognition. Object detection and segmentation. Prerequisite: a minimum grade of 1.0 in E E 242; MATH 136 or MATH 208; and either IND E 315, MATH 394/STAT 394, or STAT 390.View course details in MyPlan: E E 443
E E 456 Computer-Aided Design in Power Systems (4)Design-oriented course in power system engineering. Students are assigned a project concerning system operation and planning, steady-state and dynamic behaviors of power systems, or distribution systems. Each involves formulation of design criteria, development of approach, application of existing software. Prerequisite: either 1.0 in E E 454 or 1.0 in E E 455.View course details in MyPlan: E E 456
E E 496 Engineering Entrepreneurial Systems and Design (2)Fundamentals of systems engineering methods, system life cycle, project management and scheduling, trade studies, risk mitigation, configuration management, budgeting, procurement, prototyping, technical reviews, and associated tools; startup life cycle, intellectual property, trade secrets, patents, startup financing, incorporation, business plan, market research, roles of officers.View course details in MyPlan: E E 496
E E 500 Graduate Seminar (1, max. 9)Weekly seminars on current topics in electrical engineering. More than one section may be offered in a given quarter. Credit/no-credit only.View course details in MyPlan: E E 500
E E 519 Stochastic Analysis of Data From Physical Systems (4)Computer systems for acquisition and processing of stochastic signals. Calculation of typical descriptors of such random processes as correlation functions, spectral densities, probability densities. Interpretation of statistical measurements made on a variety of physical systems (e.g., electrical, mechanical, acoustic, nuclear). Lecture plus laboratory. Prerequisite: E E 505.View course details in MyPlan: E E 519
E E 559 Special Topics in Electrical Energy Systems (1-5, max. 16)Topics of current interest in electrical power and energy devices and systems. Content varies from year to year, based on current professional interests of faculty member in charge.View course details in MyPlan: E E 559
In nature, signals can be actions done by an organism to alert other organisms, ranging from the release of plant chemicals to warn nearby plants of a predator, to sounds or motions made by animals to alert other animals of food. Signaling occurs in all organisms even at cellular levels, with cell signaling. Signaling theory, in evolutionary biology, proposes that a substantial driver for evolution is the ability of animals to communicate with each other by developing ways of signaling. In human engineering, signals are typically provided by a sensor, and often the original form of a signal is converted to another form of energy using a transducer. For example, a microphone converts an acoustic signal to a voltage waveform, and a speaker does the reverse.[1]
The term analog signal usually refers to electrical signals; however, analog signals may use other mediums such as mechanical, pneumatic or hydraulic. An analog signal uses some property of the medium to convey the signal's information. For example, an aneroid barometer uses rotary position as the signal to convey pressure information. In an electrical signal, the voltage, current, or frequency of the signal may be varied to represent the information.
Signal processing is the manipulation of signals. A common example is signal transmission between different locations. The embodiment of a signal in electrical form is made by a transducer that converts the signal from its original form to a waveform expressed as a current or a voltage, or electromagnetic radiation, for example, an optical signal or radio transmission. Once expressed as an electronic signal, the signal is available for further processing by electrical devices such as electronic amplifiers and filters, and can be transmitted to a remote location by a transmitter and received using radio receivers.
In Electrical engineering programs, signals are covered in a class and field of study known as signals and systems. Depending on the school, undergraduate EE students generally take the class as juniors or seniors, normally depending on the number and level of previous linear algebra and differential equation classes they have taken.[19]
The field studies input and output signals, and the mathematical representations between them known as systems, in four domains: Time, Frequency, s and z. Since signals and systems are both studied in these four domains, there are 8 major divisions of study. As an example, when working with continuous-time signals (t), one might transform from the time domain to a frequency or s domain; or from discrete time (n) to frequency or z domains. Systems also can be transformed between these domains like signals, with continuous to s and discrete to z. 041b061a72